Calorimeter Fast Sim Update

Kurt Hill Ron Belmont 2-16-2016

Outline

- Motivation
- Method I: Integrated EMCal and HCal
- Method II: Separate EMCal and Hcal
- Parameterizations

Motivation

- Testing different tracker configurations and observe large fake rate when using ganged output in strip layers (expected)
- Want a fast sim of the calorimeters
 - Need some idea of how calorimeter-track matching will improve purity in high multiplicity events
 - Full GEANT4 sim is too cumbersome to test many configurations
- Open questions
 - What level of realism is necessary?

Method I: Integrated EMCal and HCal

- Model whole calorimeter as a "blackhole" cylinder in place of the EMCal
 - Particles leave a single hit, deposit all energy, and are killed
- During tower building phase, smear detector response as a function of truth energy, rapidity, and particle species
- Smearing calculated from parameterizations developed from single particle full GEANT4 simulations
- Pros:
 - Quick and easy
- Cons:
 - Cannot implement different segmentation as in EMCal vs Hcal
 - No electron-separation (Upsilons)

Method II: Separate EMCal and HCal

- EMCal is a thin cylinder of gas at radius of EMCal
 - Particles pass through and leave hits but don't shower
- Hcal is a "blackhole" cylinder at radius of Hcal
- During tower building phase...
 - Loop over the hits each EMCal tower, determine deposited energy
 - Loop over hits in HCal towers, subtract off energy from EMCal, smear remaining energy

Pros:

- Could be more realistic
- More parameters to tune

Cons:

- Much more complex (room for error)
- Need to understand EMCal-HCal correlations

Parameterizations

 Making functional parameterizations based on full simulations

 This gets complicated if EMCal and HCal are separate

Library of pre generated showers?

Conclusions & Questions

- Starting with easiest method---black hole for full calorimeter system
 - Thoughts on validity? Reasonable as a starting point?
- Second method---emc and hcal separate
 - Is this important for the present study?
 - Eventually yes---e/h separation (?)
- Additional questions
 - Spreading energy to towers surrounding the central one is important for understanding occupancy effects
 - Any suggestions for how to approach such a parameterization are welcome
 - How about the look up table? Seems like it could be a lot of work for a level of detail that's not needed, but we definitely seek input from the experts